
Fog-Based Solution for Real-Time Monitoring and 

Data Processing in Manufacturing 

Stefan Mocanu, Giorgiana Geampalia, Oana Chenaru, Radu Dobrescu 

Faculty of Automatic Control and Computer Science 

Politehnica University 

Bucharest, Romania 

smocanu@rdslink.ro, giorgiana_geampalia_91@yahoo.com, oana.chenaru@gmail.com, rd_dobrescu@yahoo.com

 

 
Abstract—Today’s industry is facing an increased need for 

implementing intelligent manufacturing solutions, capable of 

integrating existing machinery with new technologies. Current 

solutions do not provide support for analyzing vast amounts of 

data. Also, implementation of cloud architectures proved 

inappropriate for real-time or near real-time processing and 

control because of the network latency. Under these 

considerations, the new paradigm of fog computing provides 

promising characteristics enabling greater scalability, fast 

reaction time and increasing security through a local private 

processing cloud structure. This paper evaluates the integration 

capabilities between existing technologies with new devices for 

seamless integration of the fog computing paradigm and provides 

an architecture solution for this upgrade. 

Keywords—fog computing; manufacturing; Internet of Things; 

Wireless Sensor Networks 

I. INTRODUCTION 

The manufacturing industry must keep up with the 
requirements of production speed and easy reconfiguration 
involved in today’s processes. New opportunities arrive from 
state-of-the-art technological breakthroughs. While traditional 
asset management represents a time-consuming, costly and 
hard to deploy operation, continuous improvements in sensors, 
software analytics and data processing components are making 
it easier to handle by a wider circle of users with different 
process requirements. 

The evolution of IoT (Internet of Things) and Cloud 
technologies, along with increased accessibility of internet 
connected devices, lead to a growing market and many 
implemented applications [1]. IoT is playing an important role 
in improving efficient data collection and enabling availability 
through applications in various domains like industry, 
healthcare, smart home, transportation, agriculture, retail etc. It 
allows monitoring and control of any existing device and 
facilitates access to new data. This high volume of data 
produced by IoT challenged researches and professionals to 
identify new architectures capable of minimizing the Cloud 
connectivity issues through new layers like Fog Computing   
and decentralized platforms [2].  Also, data analysis 
technologies evolved to support all the stages required to 
transform it into relevant information: data preparation, data 
mining and visualization [3]. 

By leveraging IoT, advanced data analytics and AI 
(Artificial Intelligence), manufacturing processes can change 
the way they handle maintenance operations and  manage 
equipment faults, preventing costly downtime and conforming 
to the delivery time and product quality requirements. Through 
an integrated proactive maintenance approach plant owners can 
speed up the decision-making process, increasing productivity. 
Wider adoption of intelligent solutions at the plant level is 
restrained by the implementation challenges involved: 

 Many older machines are not equipped with the required 
sensors or don’t have implemented communication 
protocols.  

 Monitoring and control systems existing at the plant 
level have don’t have the processing capabilities 
required for building and running intelligent analytics 
strategies. 

 Moving data to cloud is still seen as a violation of data 
privacy. 

 The price for new intelligent devices is still high, or 
demanding increased integration effort in existing 
manufacturing systems. 

This paper aims to provide an architecture design solution 
for a manufacturing system that will integrate Fog and Cloud 
computing to enable a production coordination and support new 
asset maintenance methods in this domain. Our approach is 
oriented to enabling asset monitoring during its entire lifecycle, 
allowing the implementation of performant analysis using risk 
maintenance and uncertainty management correlated with 
process control. The proposed system will gather data from 
WSN and IoT-based smart connected assets.  

II. RELATED WORK 

Cloud technologies were first proposed as a solution for 
improving manufacturing processes by Li in 2010 [4]. Cloud 
manufacturing exploits the existing service-based operations 
defined for manufacturing applications with cloud computing, 
IOT [5] and other advanced technologies to achieve new 
manufacturing resources, centralized management, and 
intelligent business models [6].  

As presented in [6] the history of Cloud manufacturing 
begins in 1900s in USA, through the implementation of services 
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provided by Cloud Computing for Cloud manufacturing and 
substantiation of the Cloud Manufacturing layers.  

This paradigm was also approached for implementing 
advanced solution in process control applications, exploiting 
the different requirements between real-time operation and 
performance optimization [7].  

Benefits of cloud adoption in the manufacturing domain are 
empathized in [8]. The authors also identify and define the main 
actors involved in such processes: Cloud Consumer, Cloud 
Provider (Cloud Service, Cloud Service Management, and 
Security), Cloud Broker and Cloud Carrier. 

A solution for collaborative design based on the cloud 
paradigm is discussed in [9]. It provides an approach where all 
actors involved in different levels of the process, from idea to 
design, analysis, evaluation, prototype, and final product, 
cooperate during the entire lifecycle of the product 
manufacturing. A cloud architecture combining collaborative 
design, integrated manufacturing and supply chain 
management is presented by Wu et al. in [10], [11]. 

The growing increase of IoT devices and the uncertain 
latency in cloud data transmission required a new architecture 
solution that will enable fast near real-time reaction in 
applications like emergency or failure management [12]. Fog 
virtualization level allows computing, fast situation analysis 
and reaction to occur at a local level, closer to IoT devices and 
only pushes relevant data to the cloud. Cisco defined “fog 
computing“as a new abstraction level “earlier to the things that 
produce and act on IoT data” [13]. The equipment deployed at 
this level act as fog nodes and ensure small scale cloud 
functionality that can acquire and process data from any device 
with computing, storage, and network connectivity can be a fog 
node. Existing factory processing devices like industrial 
controllers, switches, routers, embedded servers are primitive 
representations of fog nodes, supporting easy adoption of this 
paradigm [13] 

One of the important benefits that fog computing offers is 
implementation of real-time or near real-time solutions of that 
require very low and predictable latency. Other characteristics 
of the fog are: mobility, wireless access, heterogeneity, 
geographical distribution, location awareness [13]. These 
benefits were integrated with the IoT domain in applications 
like smart cities or ambient assisted living [14]. Adoption of fog 
architectures in manufacturing domain is at its early stage and 
most papers focus on identification of implementation 
architectures and application domains. First perspectives of 
benefits from adopting for architecture in manufacturing was 
presented in [12]. They include domains requiring fast 
decisions, like failure management, geo-distributed 
applications and efficient production planning. In [15] the 
authors provide a fog computing-based framework for online 
process monitoring, detailing the components on the workflow, 
communication protocols and predictive analytics levels. The 
paper also highlights the benefits of implementation of a fog 
computing-based framework: connectivity between physical 
devices and the cloud, low and predictable network latency, 
remote access to high volumes of factory data in secure manner, 
high performance computing and real time data analytics. A 
different perspective oriented to cyber-physical systems that 

embed PMML-encoded machine learning models is presented 
in [15].  

III. SYSTEM ARCHITECTURE 

This section presents a fog-based architecture for the 
manufacturing domain, allowing integration of new IoT devices 
with existing plant equipment. It can enable better exploitation 
of existing manufacturing ICT systems through acquisition and 
analysis of large volumes of real-time data. The platform works 
on top of existing networking infrastructure, integrating wired 
and wireless industrial communication with new IoT-based 
sensors and devices. Its role is to merge and create various 
sensing data from multiple edge nodes, being able to deliver 
smart and customized services to users and businesses. Such a 
system has two main advantages: leveraging implementation of 
advanced processing algorithms, like implementation of 
predictive maintenance and fault diagnosis models, and 
providing a scalable network, more easily adapted to 
decentralized or geographical distributed manufacturing 
processes.  

The overall system architecture for integration of IoT and 
plant floor devices in a Fog architecture for manufacturing 
processes is presented in Fig.1.  

The first level is represented by process legacy machinery 
and sensors, along with new devices like IoT and WSN 
(Wireless Sensor Networks). Plant Floor sensing area is divided 
into the following:  

a) Smart Sensors and Control for monitoring and 
controlling the process motors, pumps and conveyors 
(including voltage, current and power supplied, vibration level 
etc.).  

b) Video monitoring cameras for intelligent assistance in 
applications like quality control, robot assistance in 
components assembly, safety and security operations. 

c) Process sensors for monitoring the operational and 
environmental parameters (like temperature, humidity, gases, 
air pollutants etc.).  

d) Mobile robots for manipulating products and 
components, pieces assembly, material cutting or glueing, etc. 

Towards monitoring these devices, with different roles, 
communication protocols and heterogenous data sources, there 
is a need for adding Fog gateways. This layer works as a bridge 
between WSN, plant floor devices and the Fog node, so as to 
form a seamless management platform across all available data 
sources and cloud. They act both as protocol adapters from 
typical plant floor communication towards cloud integration 
and as data aggregators, allowing different data formats and 
sampling periods. 

To facilitate further integration in architectures aligned to 
the fog computing paradigm, smart devices and gateways that 
are to be installed in a factory shall use 6LoWPAN standard. 
This is an IP based communication built upon the IEEE 
802.15.4, which ensures that every smart device gets an 
individual IP address. This way a group of smart devices will 
be engaged in a Neighborhood Area Network based on 
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6LoWPAN. These collect data from plant floor and are capable 
to send it to Fog nodes.  

 

Fig. 1. System architecture for a Fog based manufacturing process 

At the Fog node data is collected in real time for analytics 
and fast decision-making, and a Backbone network like 3G/4G 
is used for communicating to Cloud. Beyond the basic 
management services like data acquisition, data storage, 
visualization, processing and failure handling, the real-time 
data analysis is a key requirement that can be implemented at 
this layer. Because of the limited resources available at the 
sensor devices, typical cloud architectures require all data to be 
uploaded to a virtualized site to facilitate further processing. 
Such data collected from independent IoT sources often have 
implicit but disparate assumptions of interpretation. Such 
implicit assumptions of data interpretation must be addressed 
before the services can be dynamically composed and 
delivered. These Fog nodes support heterogeneity, cloud 
integration and distributed data analytics as we take the 
advantage of the low latency with a wide and dense 
geographical distribution. This also reduces the network traffic, 
latency and provides scalability. This helps in improving 
reliability of the manufacturing process, in improving the 
efficiency of the operation and extending the asset life. 

The role of the cloud level in such architectures is focused 
in analytics that don’t require real-time processing, like 
development of the prediction and fault identification models, 
business analytics, production planning etc. This layer uses 
JAVA RESTful web services for the communication with 
different virtualized sites and with centralized servers. This 
technology provides the managed interfaces, consisting of 

development environment and APIs, to support customized IoT 
applications and services. After the operation of the related web 
services, the cloud will present the results to the user in the form 
of REST-style data through HTTP.  

IV. PLATFORM FOR VIRTUALISATION OF A MANUFACTURING 

PROCESS 

Our aim in investigating a fog-based architecture is the 

development of a hybrid platform for design, simulation 

analysis and reconfiguration of flexible manufacturing lines. It 

will include both real models of existing equipment as well as 

virtual models. These can be used in scenarios developed in a 

Virtual Development Environment to evaluate production line 

performance. The development environment represents a proof-

of-concept for Hybrid Process Simulation (HPS) applications.  

A. Manufacturing process description 

The structure of the physical application is illustrated in Fig. 

1. It is a laboratory assembly from ASTI Automation [16] 

consisting of a flexible assembly line built from several 

individual stations, acting as interoperable and reconfigurable 

line modules. The first station uses a robotized pallet 

supply/retrieval unit with pallet buffer to store pallets for the 

product pieces and to place them on a conveyor belt. A second 

station aligns the pallet to fit a certain position, places the first 

piece of the product on it and forwards it to the next station. A 

mobile robotic arm continues the assembly with several small 

pieces. The assembly is performed based on a video inspection 

of the positioning of the product on the line. The following 

station is responsible for mounting and pressing the last piece, 

resulting in a compact product. The final station is responsible 

for product griping and stacking.  

 

Fig. 2. Structure of the manufacturing line application 

B. Fog integration of the manufacturing process 

Smart sensors will be deployed for controlling a product to 

enter the next processing station, for detecting the buffer stack 

state (with or without pieces) or for video analysis to support 

piece recognition and assisted assembly. Each station has its 

own industrial controller, acting as a fog node for real-time 

monitoring and data processing. This way the plant can be 

designed to allow line automatic reconfiguration and better 

production planning. The cloud level can adapt the control 

parameters or strategy of a fog node to support this 

functionality. This way, the fog node reduces network latency 

associated with cloud communication and allows fast access to 

real time data without spatial constraints. Even if in our 
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laboratory set-up each node processes a limited amount of data, 

they can be scaled for hundreds of data sources. Fog nodes can 

be connected through the communication link both to the cloud 

and to other factory nodes. 

C. Cloud computing for process virtualization 

The cloud level uses data-driven methods for possible fault 

diagnosis and predictive maintenance. It includes process 

interfaces to connect to the fog level and a development 

environment that allows the definition of function blocks and 

networks to model the manufacturing process. A model-based 

representation of the plant allows virtualization of the 

manufacturing process for better production planning, 

machinery upgrades or plant reconfiguration. The platform will 

use condition monitoring to predict the “health” state of the 

manufacturing equipment. For example, by measuring the time 

interval of a production piece on the conveyor line we can 

predict motor maintenance requirements. 

The platform allows access to process data integrated with 

process simulations, such as the user can sustain a real-time 

control of production, including product machining process, 

assembly process, production system planning and 

reconfiguration for improved manufacturing system efficiency 

and reliability. Both the models for data acquisition (distributed 

sensor configurations for visual servoing systems) as well as the 

ones for the dynamic behavior will be encapsulated as function 

blocks. These function blocks will be used as software 

resources stored in an online cloud-based library. 

D. Function block library 

The cloud library is available as a components-based 

function blocks application. The function blocks encapsulate 

variables, parameters, modelling and computing algorithms that 

are required for the analysis and simulation of the real 

manufacturing process. The design takes under consideration 

the possibility of implementation as a distributed application, 

through the use of several Docker containers connected through 

a network using REST services. The library uses three types of 

function blocks: 

- Interface model blocks represent a specific process 

attached to an equipment; the functionality includes 

data acquisition, processing and transmitting 

commands to and from the fog level; 

-  Operational function blocks that are application 

specific and implement communication and signal 

processing functions; 

- Algorithm function blocks that execute mathematical 

functions, modelling algorithms, algorithms for 

specific analysis like fault diagnosis etc. 

The management of the library and function block 

execution take place from a web application with the structure 

illustrated in Fig. 3. A user can see available function blocks, 

can add or use single block functions, for which he must 

configure the communication parameters (IP, port, tag address) 

for the data input and output. These blocks can be automatically 

executed on the cloud server with a direct connection with the 

manufacturing process, through the fog level. The user can see 

in the web interface the input values and the result of the 

execution, with a refresh rate of 500 ms. The values can be 

linked to the fog node for a near-real-time execution, where the 

refresh rate depends on the network latency and server load. A 

user disconnection does not stop the function block execution, 

as it continues to run as a service in the cloud.  

 

Fig. 3. Function block library interface structure 

Multiblock models represent function blocks networks 

implemented by linking several single block inputs and outputs 

to obtain an algorithm with increased complexity (Fig. 4). After 

a multi block model is created, its architecture is saved in a 

descriptor file using YAML language, to be available for 

loading and launching in future applications. This approach is 

used in existing control logic and mathematical modelling tools 

to achieve better control and easier maintenance of 

implemented functions. The page for multiblock model 

development allows a user to select existing function blocks, to 

add constant values as inputs or to graphical link inputs and 

outputs using a drawing area.  

 

Fig. 4. Drawing interface for the multiblock model 

Through the use of function blocks the library allows the 

execution of process models, algorithms and analysis of process 

state. The execution results can be forwarded to the fog node as 

data stream or can be generated in XML files to be processed 

and presented graphically in the cloud node. 
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V. MONITORING AND CONTROL OF A VISUAL SERVOING 

SYSTEM 

In the presented manufacturing line application, the visual 
servoing system is used to control the robotic manipulator in the 
correct selection and positioning of the pieces needed for the 
assembly. The real time operation was implemented with a 
simple control law that compares current and expected features 
of the image plane to compute the error (Fig. 5).  

  

       

 

Fig. 5. Control law of the robotic arm based on the visual servoing system 

Considering a servoing application, the tracer vector  𝑓𝑚 =
[xn, yn, an, τ, ξ, α]T can be used to characterize the object in the 
image [17]. The first three components of the vector  𝑓𝑚 are 
used to control the components of the linear speed 
corresponding to the robot. Considering a project of the object 
in the image plane, its position relative to the coordinate system 
is given by: 

𝑥𝑛 = 𝑎𝑛𝑥𝑔                                   (1) 

𝑦𝑛 = 𝑎𝑛𝑦𝑔                                   (2) 

𝑎𝑛 = 𝑍∗√
𝑎∗

𝑎
                                 (3) 

where:  

n is the number of points describing the image object 

Z* represents the desired depth between the camera and the 
object in the reference image,  

a* represents the area of the object in the reference image  

a represents the area of the current analyzed object and  

(xg, yg) represents  the center of gravity attached to the object. 

As presented in [18], the interaction matrix 𝐿𝑓 for the 

moments of the image defined by n points is given by equation 
(4).  

𝐿𝑓 =

[
 
 
 
 
 
 
−1 0 0 𝑎𝑛𝑒11 −𝑎𝑛(1 + 𝑒12) 𝑦𝑛

0 −1 0 𝑎𝑛(1 + 𝑒21) −𝑎𝑛𝑒11 −𝑥𝑛

0 0 −1 −𝑒31 𝑒32 0
0 0 0 𝜏𝑤𝑥

𝜏𝑤𝑦
0

0 0 0 𝜉𝑤𝑥
𝜉𝑤𝑦

0

0 0 0 𝛼𝑤𝑥
𝛼𝑤𝑦

−1 ]
 
 
 
 
 
 

       

(4)  

The difference between the target features and the current 
features represents the error function:  

𝑒 = 𝑓 − 𝑓∗                                      (5) 
This allows a representation of a simplified control law for 

the camera velocity as: 

𝑣𝑐
∗ = −

1

2
𝜆𝐿𝑓

∗𝑒                                   (6) 

where:  

Lf
*  - is the Moore-Penrose pseudoinverse of 𝐿𝑓  

 𝜆 – represents the proportionality factor,  

The camera velocity can be represented as: 

𝑣𝑐
∗ = [𝑣∗  𝜔∗]𝑇                             (7) 

where: 

𝑣∗ = [𝑣𝑥
∗  𝑣𝑦

∗  𝑣𝑧
∗]

𝑇
  - the linear component of the velocity 

𝜔∗ = [𝜔𝑥
∗   𝜔𝑦

∗   𝜔𝑧
∗]

𝑇
  - the angular component of the velocity 

The fog node ensures real time processing of the visual 
information and control of the mechanic grip. The cloud level 
allows model improvement, predictive maintenance and 
machine learning by correlating images with robot actions (the 
fog node reacts in a certain way for specific results of the image, 
these actions can be learned to allow faster decisions).  

The model of this servoing system was encapsulated as a 
function block in the virtualized platform. We used it in a single 
function block with a matrix representation of the interaction 
matrix. Function block inputs are represented by vectors of the 
image definition 𝑓 = [𝑥𝑛 , 𝑦𝑛 , 𝑎𝑛 , 𝜏, 𝜉, 𝛼]𝑇. The output is the 
camera velocity.  

After creating the function block, the execution can be 
started by selecting it in the launch model page. This loads the 
YAML architecture description file and sends it to a REST 
interface on a dedicated server that assigns the required 
resources in the cloud. Each function block is stored as an 
executable file. When allocating required resources, each such 
executable file from the architecture is encapsulated in a docker 
container and these containers are then sent to cloud. To be able 
to execute the model, the user is asked to load a file with input 
data. The file is sent to a REST interface that stores it in the 
cloud. The first block of the model takes its input data from this 
file. This function block is an interface between the file and the 
rest of the model, with no other role that to forward data to the 
operational and algorithms function blocks. Data generated 
from the execution in saved in an output file that can be 
downloaded from a specific link provided by the web 
application.  
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VI. CONCLUSIONS 

This paper evaluates the integration capabilities between 
existing technologies with new devices for seamless integration 
of the fog computing paradigm in manufacturing domain and 
provides an architecture solution for this upgrade. The fog node 
can be seen as a private local cloud, enabling real-time 
processing and control. As the communication uses IoT 
protocols, these is an easy adoption of this architecture in 
current cloud-connected manufacturing processes. The 
virtualization of the presented process allows access to 
advanced computing resources that can be exploited in near-
real-time or offline execution. The scalable architecture can be 
easily adapted to integrate existing machinery and new devices, 
through the use of fog gateways and docker container at the 
cloud level.  

Future work will include development of a prototype for a 
fog computing manufacturing system in the predictive 
maintenance area, using machinery from the presented 
educational application. This prototype will include the direct 
connection between the visual servoing system and its model in 
the cloud to evaluate and improve the manipulation arm control 
strategy. 
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